Energy Management Smart Modular Power Analyzer Type WM30 96

- Communication protocol: MODBUS-RTU
- MODBUS TCP/IP Ethernet port (on request)
- BACnet-IP over Ethernet port (on request)
- BACnet MS/TP over RS485, BTL approved (on request)
- Profibus DP V0 port, PROFIBUS Nutzerorganisation e.V. approved (on request)
- Up to 2 digital outputs (pulse, alarm, remote control) (on request)
- Up to 4 freely configurable virtual alarms
- Up to 2 analogue outputs (+20mA, +10VDC) (on request)

- · Class 0.5S (kWh) according to EN62053-22
- Class 2 (kvarh) according to EN62053-23
- Accuracy ±0.2% RDG (current/voltage)
- Instantaneous variables readout: 4x4 DGT
- Energies readout: 9+1 DGT
- · System variables: VLL, VLN, A, VA, W, var, PF, Hz, Phase-sequence-asymmetry-loss.
- Single phase variables: VLL, VLN, AL, An (calculated), VA, W, var, PF
- · Both system and single phase variables with average and max calculation
- · Harmonic analysis (FFT) up to the 32nd harmonic (current and voltage)
- · Energy measurements (imported/exported): total and partial kWh and kvarh
- Energy measurements according to ANSI C12.20 CA 0.5, ANSI C12.1
- Run hours counter (8+2 DGT)
- Real time clock function
- Application adaptable display and programming procedure (Easyprog function)
- Universal power supply: 24-48 VDC/AC, 100-240 VDC/AC
- Front dimensions: 96x96 mm
- Front protection degree: IP65, NEMA4X, NEMA12
- One RS232 and RS485 port (on request)

Product Description

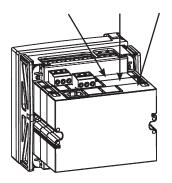
Three-phase smart recommended for measurement of the

power either for pulse proportional to the analyzer with built-in advanced active and reactive energy being configuration system and LCD measured or/and for alarm outputs. data displaying. Particularly The instrument can be equipped the with the following modules: RS485/ main RS232, Ethernet, BACnet-IP, electrical variables. WM30 is BACnet MS/TP or Profibus DP based on a modular housing for V0 communication ports, pulse panel mounting with IP65 (front) and alarm outputs. Parameters protection degree. Moreover, programming and data reading the analyzer can be provided can be easily performed by means with digital outputs that can be of UCS (Universal Configuration Software).

How to order	WM30-96 AV5 3 H R2 A2 S1 XX
Model	
Range code	
System	
Power Supply	
A Outputs	
B Outputs	
Communication	
Option	

Type Selection

Range	e codes	Syst	em	Pow	er supply	A Ou	tputs
AV4:	3x220(380)3x400(690)V 1(2)A V _{LN} : 220 to 400 V _{LN}	3:	balanced and unbalanced load: 3-phase, 4-wire;	H:	100-240 +/-10% (90 to 255) VDC/AC (50/60 Hz)	XX: O2:	none Dual channel static output
AV5:	V _{LL} : 380 to 690 V _{LL} 3x220(380)3x400(690)V 5(6)A V _{LN} : 220 to 400 V _{LN}		3-phase, 3-wire; 2-phase, 3-wire; 1-phase, 2-wire	L:	24-48 +/-15% (20 to 55) VDC/AC (50/60 Hz)	R2:	Dual channel relay output
AV6:	V _{LL} : 380 to 690 V _{LL} 3x57.7(100)3x133(230)V	Optio	ons	Com	munication	B Ou	itputs
AV7:	5(6)A V _{LN} : 57.7 to 133 V _{LN} V _{LL} : 100 to 230 V _{LL} 3x57.7(100)3x133(230)V	XX:	none	XX: S1: E2:	none RS485/RS232 port Ethernet / Internet	XX: A2:	none Dual channel 20mA DC output
	1(2)A V _{LN} : 57.7 to 133 V _{LN} V _{LL} : 100 to 230 V _{LL}			B1:	port BACnet (IP) over Ethernet	V2:	Dual channel 10V DC output
				B3: P1:	BACnet (MS/TP) over RS485 Profibus DP/V0 port		


Position of modules and combination

Ref	Description	Main features	Part number	Pos. A	Pos. B	Pos. C
1		Inputs/system: AV5.3 Power supply: H	WM30 AV5 3 H			
2		Inputs/system: AV6.3 Power supply: H	WM30 AV6 3 H			
3		Inputs/system: AV4.3 Power supply: H	WM30 AV4 3 H			
4	WM30 base provided with display,	Inputs/system: AV7.3 Power supply: H	WM30 AV7 3 H			
	power supply, measuring inputs	Inputs/system: AV5.3 Power supply: L	WM30 AV5 3 L			
		Inputs/system: AV6.3 Power supply: L	WM30 AV6 3 L			
		Inputs/system: AV4.3 Power supply: L	WM30 AV4 3 L			
		Inputs/system: AV7.3 Power supply: L	WM30 AV7 3 L			
5	Dual relay output (SPDT)	2-channel Alarm or/and pulse output	M O R2	Х		
6	Dual static output (AC/DC Opto-Mos)	2-channel Alarm or/and pulse output	M O O2	Х		
7	Dual analogue output (+20mADC)	• 2-channel	M O A2		Х	
8	Dual analogue output (+10VDC)	• 2-channel	M O V2		Х	
9	RS485 / RS232 port module	• Max. 115.2 Kbps	M C 485 232			X
10	Ethernet port module	• RJ45 10/100 BaseT	M C ETH			Х
11	BACnet-IP port module	Based on Ethernet bus	M C BAC IP			Х
12	BACnet-MS/TP port module	Over RS485	M C BAC MS			X
13	Profibus module	Profibus DP V0 Over RS485	МСРВ			Х

NOTE:

The position of the modules shall respect the sequence A-B-C. Possible arrangements are M, M-A, M-B, M-C, M-A-B, M-A-C, M-B-C and M-A-B-C where "M" is the basic module (WM30-96).

It is possible to use the WM30-96 without any additional module as a simple indicator.

Input specifications

Rated inputs	System type: 1, 2 or	Start up current AV5, AV6	5mA
Input type	3-phase	Start up current AV4, AV7	1mA
Input type	Galvanic insulation by means of built-in CT's	Energy additional errors	According to EN62053-22, ANSI C12.20,
Current range (by CT)	AV5 and AV6: 5(6)A	Influence quantities	According to EN62053-23,
	AV4 and AV7: 1(2)A		ANSI C12.1
Voltage (by direct connection		Total Harmonic Distortion (THD)	±1% FS (FS: 100%) AV4: Imin: 5mARMS;
or VT/PT)	AV4, AV5: 3x220(380)3x400(690)V		Imax: 3A; Umin: 30VRMS;
Acquirect (Dioplay L DC495)	AV6, AV7: 3x57.7(100)3x133(230)V		Umax: 679Vp
Accuracy (Display + RS485) (@23°C ±2°C,	0.01ln=0.05A (AV5, AV6 - kWh, PF=1) 0.01ln=0.01A (AV4, AV7 - kWh, PF=1)		AV5: Imin: 5mARMS; Imax: 15Ap; Umin: 30VRMS;
	0.05ln=0.25A (AV5, AV6 - kWh, PF=1)		Umax: 679Vp
	0.05ln=0.05A (AV4, AV7 - kWh, PF=1)		AV6: Imin: 5mARMS; Imax: 15Ap; Umin: 30VRMS;
	In: see below, Un: see below		Umax: 204Vp
AV4 model	In: 1A, Imax: 2A; Un: 220 to 400VLN (380 to 690VLL)		AV7: Imin: 5mARMS; Imax:
AV5 model	In: 5A, Imax: 6A; Un: 220		3A; Umin: 30VRMS; Umax: 204Vp
A) (C d - l	to 400VLN (380 to 690VLL)	Temperature drift	≤200ppm/°C
AV6 model	In: 5A, Imax: 6A; Un: 57.7 to 133VLN (100 to	Sampling rate	3200 samples/s @ 50Hz,
	230VLL)		3840 samples/s @ 60Hz
AV7 model	In: 1A, Imax: 2A; Un: 57.7 to 133VLN (100 to 230VLL)	Measurements	See "List of the variables that can be connected to:"
Current AV4, AV5, AV6, AV7	, , , , , , , , , , , , , , , , , , ,	Method	TRMS measurements of
models	From 0.01In to 0.05In: ±(0.5% RDG +2DGT)	Coupling type	distorted wave forms. By means of CT's
	From 0.05ln to Imax:	Crest factor	AV5, AV6: ≤3 (15A max.
B	±(0.2% RDG +2DGT)	or our ruotor	peak)
Phase-neutral voltage	In the range Un: ±(0,2% RDG +1DGT)		AV4, AV7: ≤3 (3A max. peak)
Phase-phase voltage	In the range Un: ±(0.5%	Current Overloads	peak)
Voltage tolerance	RDG +1DGT) Un -20%, Un +15%	Continuous (AV5 and AV6)	6A, @ 50Hz
Frequency	From 40 to 65 Hz ±(0.02% RDG +	Continuous (AV4 and AV7) For 500ms (AV5 and AV6)	2A, @ 50Hz 120A, @ 50Hz
	1 DGT), From 65 to 340 Hz ±(0.05% RDG +	For 500ms (AV4 and AV7)	40A, @ 50Hz
	1 DGT).	Voltage Overloads	
	From 340 to 440 Hz ±(0.1% RDG +	Continuous For 500ms	1.2 Un 2 Un
Active and Apparent power	1 DGT) From 0.01In to 0.05In, PF	Input impedance	2 011
	1: ±(1%RDG+1DGT)	400VL-L (AV4 and AV5)	> 1.6MΩ
	From 0.05In to Imax PF 0.5L, PF1, PF0.8C:	208VL-L (AV6 and AV7)	> 1.6MΩ < 0.2VA
	±(0.5%RDG+1DGT)	5(6)A (AV5 and AV6) 1(2)A (AV4 and AV7)	< 0.2VA < 0.2VA
Power Factor	±[0.001+0.5% (1.000 - "PF	Frequency	40 to 440 Hz
Reactive power	RDG")] From 0.02In to		
•	0.05ln, senφ 1:		
	±(1.5%RDG+1DGT) From 0.05In to Imax, senφ		
	1: ±(1%RDG+1DGT)		
	From 0.05ln to		
	0.1In, senφ 0.5L/C: ±(1.5%RDG+1DGT)		
	From 0.1In to Imax, senφ		
Active energy	0.5L/C: ±(1%RDG+1DGT) Class 0.5S according to		
, touve onergy	EN62053-22, ANSI C12.20		
Reactive energy	Class 2 according to		
1 todolivo chorgy	EN62053-23, ANSI C12.1.		

Output specifications

Relay outputs (M O R2)		Pulso typo	Programmable from 0.001
Physical outputs	2 (max. 1 module per instrument)	Pulse type	Programmable from 0.001 to 10.00 kWh/kvarh per pulse.The above listed
Purpose	For either alarm output or pulse output		variables can be connected
Туре	Relay, SPDT type AC 1-5A @ 250VAC; AC 15-1.5A @ 250VAC	Pulse duration	to any output. 30 ms (ON), ≥30 ms (OFF), according to EN62053-31
Configuration	By means of the front key- pad or UCS software	Remote controlled outputs	The activation of the outputs is managed
Function	The outputs can work as alarm outputs but also as pulse outputs, remote controlled outputs, or in	Insulation	through the serial communication port See "Insulation between inputs and outputs" table
Alarms	any other combination. Up alarm and down alarm linked to the virtual alarms, other details see Virtual alarms	20mA analogue outputs (M O A2) Number of outputs	2 per module (max. 1 module per instrument)
Min. response time	≤200ms, filters excluded. Set-point on-time delay: "0 s".	Accuracy (@ 25°C ±5°C, R.H. ≤60%) Range	±0.2%FS 0 to 20mA
Pulse Signal retransmission	Total: +kWh, -kWh, +kvarh,	Configuration	By means of the front key-
,	-kvarh. Partial: +kWh, -kWh, +kvarh, -kvarh.	Signal retransmission	pad or UCS software The signal output can be connected to any instantaneous variable
Pulse type	Programmable from 0.001 to 10.00 kWh/kvarh per pulse. The above listed variables can be connected to any output.	Scaling factor	available in the table "List of the variables that can be connected to". Programmable within
Pulse duration	30 ms (ON), ≥30 ms (OFF), according to EN62053-31	Response time	the whole range of retransmission. ≤400 ms typical (filter
Remote controlled outputs	The activation of the	Ripple	excluded) ≤1% (according to IEC 60688-1, EN 60688-1)
Insulation	outputs is managed through the serial communication port See "Insulation between inputs and outputs" table	Total temperature drift Load Insulation	≤500 ppm/°C ≤600Ω See "Insulation between inputs and outputs" table
Static outputs (M O O2)	Opto-Mos type	10VDC analogue outputs	
Physical outputs	2 (max. 1 module per instrument)	(M O V2) Number of outputs	2 (max. 1 module per
Purpose	For either pulse output or alarm output	Accuracy	instrument)
Signal	V _{ON} : 2.5VAC/DC/max.100mA V _{OFF} : 42VDC max.	(@ 25°C ±5°C, R.H. ≤60%) Range	±0.2%FS 0 to 10 VDC
Configuration	By means of the front key- pad or UCS software	Configuration	By means of the front key- pad or UCS software
Function	The outputs can work as alarm outputs but also as pulse outputs, remote controlled outputs, or in	Signal retransmission	The signal output can be connected to any instantaneous variable available in the table "List of the variables that can be
Alarms	any other combination. Up alarm and down alarm linked to the virtual alarms, other details see Virtual alarms	Scaling factor	connected to". Programmable within the whole range of retransmission;
Min. response time	≤200ms, filters excluded. Set-point on-time delay: "0 s".	Response time Ripple	≤400 ms typical (filter excluded) ≤1% (according to IEC
Pulse		Total temperature drift	60688, EN 60688) ≤350 ppm/°C
Signal retransmission	Total: +kWh, -kWh, +kvarh, -kvarh. Partial: +kWh, -kWh,	Load Insulation	≥10kΩ See "Insulation between
	+kvarh, -kvarh.		inputs and outputs" table

Output specifications (cont.)

Type

Connections

Addresses

Protocol

Data (bidirectional) Dynamic (reading only)

Static (reading and writing only)

Data format

Baud-rate

Driver input capability

Note

Insulation

RS232 port (on request)

Type

Connections Protocol

Data (bidirectional) Dynamic (reading only)

Static (reading and writing only)

Data format

Baud-rate

Note

Insulation

Multidrop, bidirectional (static and dynamic variables)

2-wire

module

Max. distance 1000m, termination directly on the

247, selectable by means of the front key-pad MODBUS/JBÚS (RTU)

System and phase variables: see table "List of variables..

All the configuration

parameters.

1 start bit, 8 data bit, no/ even/odd parity,1 stop bit Selectable: 9.6k, 19.2k, 38.4k, 115.2k bit/s 1/5 unit load. Maximum 160 transceivers on the same bus.

With the rotary switch (on the back of the basic unit) in lock position the modification of the programming parameters and the reset command by means of the serial

communication is not allowed anymore. In this case just the data reading is allowed.

See "Insulation between inputs and outputs" table

Bidirectional (static and dynamic variables) 3 wires. Max. distance 15m MODBUS RTU /JBUS

System and phase variables: see table "List of variables..

All the configuration parameters

1 start bit, 8 data bit, no/ even/odd parity,1 stop bit Selectable: 9.6k, 19.2k, 38.4k, 115.2k bit/s With the rotary switch (on the back of the basic unit) in lock position the modification of the programming parameters and the reset command by means of the serial communication is not allowed anymore. In this case just the data reading

is allowed. See "Insulation between inputs and outputs" table Ethernet/Internet port (on request)

Protocols IP configuration

Client connections Connections

Data (bidirectional) Dynamic (reading only)

(reading and writing only)

Note

Modbus TCP/IP Static IP / Netmask / Default gateway Selectable (default 502) Max 5 simultaneously RJ45 10/100 BaseTX

System and phase variables: see table "List of

All the configuration parameters.

variables...

Max. distance 100m

With the rotary switch (on the back of the basic unit) in lock position the modification of the programming parameters and the reset command by means of the serial communication is not allowed anymore. In this case just the data reading

is allowed. See "Insulation between inputs and outputs" table

BACnet-IP

Insulation

(on request) Protocols

BACnet-IP IP configuration

Device object instance

Supported services

Supported objects

IP configuration

Modbus TCP/IP Client connections

Connections

BACnet-IP (for measurement reading purpose and to write object description) and Modbus TCP/IP (for measurement reading purpose and for programming parameter

Static IP / Netmask / Default gateway Fixed: BAC0h

0 to 9999 selectable by key-pad 0 to 2^22-2 = 4.194.302, selectable by programming software or by BACnet.

"I have", "I am", "Who has", "Who is", "Read (multiple) Property"

purpose)

Type 2 (analogue value, including COV property), Type 5 (binary-value for up to 4 virtual alarm

re-transmission) Type 8 (device)

Static IP / Netmask / Default gateway

See "Ethernet/Internet port"

above

Modbus only: max 5 simultaneously

RJ45 10/100 BaseTX Max.

distance 100m

Output specifications (cont.)

Data

Dynamic (reading only)

Static (reading and writing only)

Note

Insulation

BACnet MS/TP (on request)

Available ports RS485 port Type

Connections

Device object instance

Protocol

Supported services

Supported objects

Data (mono-directional) Dynamic

Static Data format

Baud-rate

Driver input capability

MAC addresses

System and phase variables (BACnet-IP and Modbus): see table "List of variables'

All the configuration parameters (Modbus only) With the rotary switch (on the back of the basic unit) in lock position the modification of the programming parameters and the reset command by means of the serial communication is not allowed anymore. In this case just the data reading is allowed.

See "Insulation between inputs and outputs" table

2: RS485 and Ethernet

Multidrop, mono-directional (dynamic variables) 2-wire Max. distance 1000m, termination directly on the module 0 to 9999 selectable by key-pad 0 to 2^22-2 = 4.194.302,

selectable by programming software or by BACnet. BACnet MS/TP (for measurement reading purpose and to write object description)

"I have", "I am", "Who has", "Who is", "Read (multiple) Property⁵

Type 2 (analogue value, including COV property), Type 5 (binary-value for up to 4 virtual alarm re-transmission)

Type 8 (device)

System and phase variables: see table "List of variables.. Not available 1 start bit, 8 data bit, no parity,1 stop bit Selectable: 9.6k, 19.2k, 38.4k or 76.8k kbit/s 1/5 unit load. Maximum 160 transceivers on the

same bus. Selectable: 0 to 127 Ethernet port Protocol

IP configuration

Modbus Port Client connections

Data

Dynamic (reading only)

Static (reading and writing only)

Note

Connections

System and phase variables: see table "List of

variables...

purpose)

Modbus TCP/IP (for

. Static IP / Netmask / Default gateway

Modbus only: max 5

simultaneously

distance 100m

programming parameter

Selectable (default 502)

RJ45 10/100 BaseTX Max.

All the configuration parameters (Modbus only). With the rotary switch (on the back of the basic unit) in lock position the modification of the programming parameters and the reset command by means of the serial communication is not allowed anymore. In this case just the data reading is allowed.

See "Insulation between inputs and outputs" table

Profibus (MCPB) Available ports

USB Purpose

Insulation

Approval

Connector Protocol Data format

Baudrate

Address Profibus Purpose 2: USB and Profibus DP V0 Programmable parameters

setting USB micro B Modbus RTU 1 start bit, 8 data bit, no parity,1 stop bit autorange depending on the master (max 115200 bps)

Data reading (12 programmable profiles

Modules Selectable:

Data format (profiles)

Connector

realtime selectable); remote output control; remote tariff control; output up to 4 bytes, input up to 62 words

totalizers : FLOAT or INT32;

electrical variables: FLOAT or INT16;

status variables: UINT16

RS485 DB9

Output specifications (cont.)

Protocol Baudrate	Profibus DP V0 slave 9.6 k to 12 Mbps (9.6, 19.2, 45.45, 93.75, 187.5, or 500 kbps; 1.5, 3, 6, or 12 Mbps)	Insulation Approval	See "Insulation between inputs and outputs" table PROFIBUS Nutzerorganisation e.V.
Address	2-125 (default 126)		
Note	With the rotary switch (on the back of the basic unit) in lock position the modification of the programming parameters and the reset command by means of the serial communication is not allowed. In this case just the data reading is allowed.		

Energy meters

Meters Total Partial	4 (8+2, 9+1, 10 digit) 4 (8+2, 9+1, 10 digit)		Min9,999,999,999 kWh/ kvarh Max. 9,999,999,999 kWh/
Pulse output	Connectable to total and/or partial meters	Туре	kvarh.
Energy meter recording	Storage of total and partial energy meters. Energy meter storage format (EEPROM)	Total energy meters Partial energy meters	+kWh, +kvarh, -kWh, -kvarh +kWh, +kvarh, -kWh, -kvarh

Harmonic distortion analysis

Analysis principle Harmonic measurement	FFT		The same for the other phases: L2, L3.
Current Voltage	Up to the 32nd harmonic Up to the 32nd harmonic	System	The harmonic distortion can be measured in 3-wire
Type of harmonics	THD (VL1 and VL1-N) The same for the other phases: L2, L3. THD (AL1)		or 4-wire systems. Tw: 0.02 sec@50Hz without filter

Display, LED's and commands

Display refresh time	≤ 250 ms	Energy consumption	Red LED (only kWh)
Display	4 lines, 4-DGT, 1 lines, 10-DGT	kWh pulsating	0.001 kWh/kvarh by pulse if the Ct ratio by VT ratio is
Туре	LCD, single colour backlight		≤7 0.01 kWh/kvarh by pulse if
Digit dimensions	4-DGT: h 9.5mm; 10-DGT: h 6.0mm		the Ct ratio by VT ratio is ≥7.1 ≤70.0
Instantaneous variables read-out Energies variables read-out	4-DGT Imported Total/Partial: 8+2DGT, 9+1DGT or 10DGT; Exported Total/Partial: 8+2DGT, 9+1DGT or 10DGT (with "-" sign).		0.1 kWh/kvarh by pulse if the Ct ratio by VT ratio is ≥70.1 ≤700.0 1 kWh/kvarh by pulse if the Ct ratio by VT ratio is ≥700.1 ≤7000 10 kWh/kvarh by pulse if
Run Hours counter	8+2 DGT (99.999.999 hours and 59 minutes max)		the Ct ratio by VT ratio is ≥7001 ≤70.00k
Overload status	EEEE indication when the value being measured is exceeding the "Continuous inputs overload" (maximum measurement capacity)		100 kWh/kvarh by pulse if the Ct ratio by VT ratio is >70.01k Max frequency: 16Hz, according to EN 62052-11
Max. and Min. indication	Max. instantaneous variables: 9999; energies: 9 999 999 999. Min. instantaneous variables: 0.000; energies 0.00	Back position LEDs On the base On the communication modules	Green as power-on Two LEDs: one for TX (green) and one for RX (amber).
Front position LEDs Virtual alarms	4 red LED available in case of virtual alarm (AL1-AL2-AL3-AL4). Note: the real alarm is just the activation of the proper static or relay output if the proper module is available.	Key-pad	For variable selection, programming of the instrument working parameters, "dmd", "max", total energy and partial energy Reset

Main functions

Password 1st level 2nd level	Numeric code of max. 4 digits; 2 protection levels of the programming data: Password "0", no protection; Password from 1 to 9999,	System 3-Ph.2 balanced load System 2-Ph System 1-Ph	3-phase (2-wire), one current and 1-phase (L1) to neutral voltage measurement. 2-phase (3-wire) 1-phase (2-wire)
System selection System 3-Ph.n unbalanced load System 3-Ph. unbalanced load System 3-Ph.1 balanced load	3-phase (4-wire) 3-phase (3-wire), three currents and 3-phase to phase voltage measurements, or in case of Aaron connection two currents (with special wiring on screw terminals) and 3-phase to phase voltage measurements. 3-phase (3-wire), one current and 3-phase to phase to phase voltage measurements 3-phase (4-wire), one current and 3-phase to neutral voltage measurements.	Transformer ratio VT (PT) CT Maximum CT ratio x VT ratio Filter Operating range Filtering coefficient Filter action	1.0 to 999.9 / 1000 to 9999. 1.0 to 999.9 / 1000 to 9999 (up to 10kA in case of CT with 1A secondary current and up to 50kA in case of CT with 5A secondary current). 9999 x 9999 Selectable from 0 to 100% of the input display scale Selectable from 1 to 32 Measurements, analogue signal retransmission, serial communication (fundamental variables: V, A, W and their derived

Main functions (cont.)

Displaying Number of variables	ones). Up to 5 variables per page. See "Front view". 7 different set of variables available (see "Display pages") according to the application being selected. One page is	Harmonic analysis	the following data: - all the max and dmd values total energies: kWh, kvarh; - partial energies: kWh, kvarh Up to the 32 nd harmonics on current and voltage
Backlight	freely programmable as combination of variables. The backlight time is programmable from 0 (always on) to 255 minutes	Clock Functions Time format	Universal clock and calendar. Hour: minutes: seconds with selectable 24 hours or 12H AM/PM format.
Virtual alarms Working condition	In case of basic unit or	Date format	Day-month-year with selectable DD-MM-YY or
working condition	with the addition of M O R2 or M O O2 digital output	Battery life	MM-DD-YY format. 10 years
No. of alarms Working mode Controlled variables	modules. Up to 4 Up alarm and down alarm. The alarms can be connected to any instantaneous variable available in the table "List of the variables that can be connected to".	Easy programming function	The displayed energy is always "imported" with the only exception of "C", "D", "E" and "G" types (see "display pages" table). For those latter selections the energies can be either "imported" or "exported"
Set-point adjustment	From 0 to 100% of the display scale		depending on the current direction.
Hysteresis	From 0 to 100% of the		
On-time delay Min. response time	display scale 0 to 255s ≤ 200ms, filters excluded. Set-point on-time delay: "0 s".		
Reset	By means of the front key- pad. It is possible to reset		

General specifications

Operating temperature	-25°C to +55°C (-13°F to 131°F) (R.H. from 0 to 90% non-condensing @ 40°C) according to EN62053-21, EN62053-23	
Storage temperature	-30°C to +70°C (-22°F to 158°F) (R.H. < 90% non-condensing @ 40°C) according to EN62053-21, EN62053-23	
Installation category	Cat. III (IEC60664, EN60664)	
Insulation (for 1 minute)	See "Insulation between inputs and outputs" table	
Dielectric strength	4kVAC RMS for 1 minute	
Noise rejection CMRR	100 dB, 48 to 62 Hz	
EMC Immunity and emissions	According to EN62052-11	

General specifications (cont.)

Standard compliance Safety Metrology	IEC60664, IEC61010-1 EN60664, EN61010-1 EN62052-11. EN62053-22, EN62053-23.	Dimensions (WxHxD)	Module holder: 96x96x50mm. "A" and "B" type modules: 89.5x63x16mm. "C" type module:
Pulse output	IEC62053-31		89.5x63x20mm.
Approvals	Eligible System	Max. depth behind the panel	With 3 modules (A+B+C):
	performance Meter for Go Solar California, CE, cULus "Listed"	Material	81.7 mm Polycarbonate/ABS/Nylon PA66, self-extinguishing:
Connections	Screw-type max. 2.5 mm ² .	Mounting	UL 94 V-0 Panel mounting
Cable cross-section area	min./max. screws tightening torque: 0.4 Nm / 0.8 Nm. Suggested screws	Protection degree Front Screw terminals	IP65, NEMA4x, NEMA12 IP20
	tightening torque: 0.5 Nm	Weight	Approx. 420 g (packing included)
Housing DIN			

Insulation between inputs and outputs

	Power Supply (H o L)	Mesuring inputs	Relay output (MOR2)	Static ouput (MOO2)	Serial port	Ethernet port	Analogue outputs
Power Supply (H o L)	-	4kV	4kV	4kV	4kV	4kV	4kV
Mesuring inputs	4kV	-	4kV	4kV	4kV	4kV	4kV
Relay output (MOR2)	4kV	4kV	2kV	-	4kV	4kV	4kV
Static ouput (MOO2)	4kV	4kV	-	2kV	4kV	4kV	4kV
Serial port	4kV	4kV	4kV	4kV	-	-	4kV
Ethernet port	4kV	4kV	4kV	4kV	-	-	4kV
Analogue outputs	4kV	4kV	4kV	4kV	4kV	4kV	4kV ⁽¹⁾

^{(1):} respect another module 4kV, in the same module 0kV.

NOTE: all the models have, mandatory, to be connected to external current transformers because the isolation among the current inputs is just functional (100VAC).

^{-:} combination not allowed.

List of the variables that can be connected to:

Communication port (all listed variables)
Analogue outputs (all variables with the only exclusion of "energies" and "run hour counter"
Pulse outputs (only "energies")
Alarm outputs ("energies", "hour counter" and "max" excluded)

7 (101)	m outpute (one	-		3-ph. 3-wire	3-ph. 2-wire	2 ph 2 wire	3-ph. 4-wire	
No	Variable			unbal. sys	Notes			
NO	Vallable	(1P)	(2P)	(3P.1)	(3P.2)	(3P)	(3P.n)	Notes
1	VL-N sys	0	X	X	X	#	X	sys= system= ∑
2	VL1	X	Х	X	X	#	X	
3	VL2	0	Х	Н	Н	#	Х	(H)=VL1
4	VL3	0	0	Н	Н	#	X	(H)=VL1
5	VL-L sys	0	#	X	X	X	X	sys= system= ∑
6	VL1-2	#	X	X	Р	X	X	(P)=VL1*1.73
7	VL2-3	#	0	Х	Р	Х	Х	(P)=VL1*1.73
8	VL3-1	#	0	Х	Р	Х	Х	(P)=VL1*1.73
9	Asys	0	Х	0	0	Х	Х	
10	An	#	Х	0	0	0	Х	
11	AL1	Х	Х	Х	Х	Х	Х	
12	AL2	0	Х	K	R	Х	Х	(R)=AL1
13	AL3	0	0	K	R	Х	Х	(R)=AL1
14	VA sys	Х	Х	Х	Х	Х	Х	sys= system= ∑
15	VA L1	Х	Х	Х	Х	0	Х	
16	VA L2	0	Х	U	U	0	Х	(U)=VAL1
17	VA L3	0	0	U	U	0	Х	(U)=VAL1
18	var sys	Х	Х	Х	Х	Х	Х	sys= system= ∑
19	var L1	Х	Х	Х	Х	0	Х	<u> </u>
20	var L2	0	Х	V	V	0	Х	(V)=VARL1
21	var L3	0	0	V	V	0	Х	(V)=VARL1
22	W sys	Х	Х	Х	Х	Х	Х	sys= system= Σ
23	WL1	Х	Х	Х	Х	0	Х	
24	WL2	0	Х	S	S	0	Х	(S)=WL1
25	WL3	0	0	S	S	0	Х	(S)=WL1
26	PF sys	Х	Х	Х	Х	Х	Х	sys= system= ∑
27	PF L1	Х	Х	Х	Х	0	X	
28	PF L2	0	Х	Т	Т	0	Х	(T)=PFL1
29	PF L3	0	0	Т	Т	0	Х	(T)=PFL1
30	Hz	Х	Х	Х	X	X	Х	
31	Phase seq.	0	Х	Х	X	Х	X	
32	Asy VLL	0	0	Х	0	X	X	Asymmetry
33	Asy VLN	0	X	0	0	0	Х	Asymmetry
34	Run Hours	Х	Х	Х	X	X	X	
35	kWh (+)	Χ	X	Х	X	Χ	X	Total
36	kvarh (+)	Χ	Х	X	X	Χ	Х	Total (1)
37	kWh (+)	Х	X	X	X	X	Х	Partial
38	kvarh (+)	X	Х	X	X	X	X	Partial (1)
39	kWh (-)	Х	Х	X	Х	X	Х	Total
40	kvarh (-)	X	Х	Х	X	X	X	Total (1)
41	kWh (-)	Х	Х	X	Х	Х	Х	Partial
42	kvarh (-)	Х	Х	X	X	Х	Х	Partial (1)
43	A L1 THD	Х	Х	X	X	X	X	/E\
44	A L2 THD	0	Х	F	F	Х	X	(F)=AL1THD (F)=AL1THD
45	A L3 THD	0	0	F	F	Х	Х	
46	V L1 THD	X	X	X	X	0	X	(G)=VL1THD
47	V L2 THD	0	Х	Х	G	0	Х	(G)=VL1THD
48	V L3 THD	0	0	Х	G	0	Х	
49	V L1-2 THD	Х	Х	Х	#	X	Х	
50	V L2-3 THD	0	X	X	#	X	X	
51	V L3-1 THD	0	0	Х	#	X	X	

⁽X) = available; (O) = not available (variable not available); (#) Not available (the relevant page is not displayed)

^{(1):} On 4 quadrants (ind/cap)

Power supply specifications

Auxiliary power supply

H: 100-240 +/-10% (90 to 255) VDC/AC (50/60 Hz); L: 24-48 +/-15% (20 to 55) VDC/AC (50/60 Hz) Power consumption

AC: 20 VA; DC: 10 W

List of selectable applications

	Description	Notes
Α	Cost allocation	Imported energy metering (Easy connection)
В	Cost control	Imported and partial energy metering (Easy connection)
С	Complex cost allocation	Imported/exported energy (total and partial)
D	Solar	Imported and exported energy metering with some basic power analyzer function
E	Complex cost and power analysis	Imported/exported energy (total and partial) and power analysis
F	Cost and power quality analysis	Imported energy and power quality analysis (Easy connection)
G	Advanced energy and power analysis for power generation	Complete energy metering and power quality analysis

Display pages

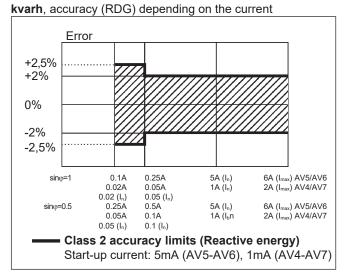
Var	No	Line 1	Line 2	Line 3 Line 4 Line 5		Note			App	licat	ions			
Type	NO	Variable Type	Variable Type	Variable Type	Variable Type	Variable Type	Note	Α	В	С	D	Е	F	G
	0	Home page		Prograr	nmable			х	х	Х	Х	Х	Х	Х
а	1	Total kWh (+)	b, c, d	b, c, d	b, c, d	b, c, d		х	х	х	х	х	Х	Х
a	2	Total kvarh (+)	b, c, d	b, c, d	b, c, d	b, c, d		х	х	Х	Х	Х	Х	х
а	3	Total kWh (-)	b, c, d	b, c, d	b, c, d	b, c, d				Х	Х	Х		х
a	4	Total kvarh (-)	b, c, d	b, c, d	b, c, d	b, c, d				Х	Х	Х		х
а	5	kWh (+) partial	b, c, d	b, c, d	b, c, d	b, c, d			х	Х		Х	Х	х
а	6	kvarh (+) part.	b, c, d	b, c, d	b, c, d	b, c, d			х	Х		Х	Х	х
а	7	kWh (-) partial	b, c, d	b, c, d	b, c, d	b, c, d				Х		Х		х
а	8	kvarh (-) part.	b, c, d	b, c, d	b, c, d	b, c, d				Х		Х		х
а	9	Run Hours (99999999.99)	b, c, d	b, c, d	b, c, d	b, c, d				х	х	x	х	х
b	10	a/Phase seq.	VLN Σ	VL1	VL2	VL3	(1) (2)				Х	Х	Х	Х
b	11	a/Phase seq.	VLN Σ	VL1-2	VL2-3	VL3-1	(1) (2)				Х	Х	Х	х
b	12	a/Phase seq.	An	AL1	AL2	AL3	(1) (2)				Х	Х	Х	х
b	13	a/Phase seq.	Hz	"ASY"	VLL sys (% asy)	VLL sys (% asy)	(1) (2)				х	х	х	х
b	14	a/Phase seq.	ΑΣ	AL1	AL2	AL3	(1) (2)				х	х	х	х
С	15	a/Phase seq.	WΣ	WL1	WL2	WL3	(1) (2)				Х	Х	Х	х
С	16	a/Phase seq.	var ∑	var L1	var L2	var L3	(1) (2)					Х	Х	х
С	17	a/Phase seq.	PF∑	PF L1	PF L2	PF L3	(1) (2)					Х	Х	х
С	18	a/Phase seq.	VA ∑	VA L1	VA L2	VA L3	(1) (2)					Х	Х	х
d	19	a/Phase seq.		THD V1	THD V2	THD V3	(1) (2)						Х	х
d	20	a/Phase seq.		THD V12	THD V23	THD V31	(1) (2)						Х	х
d	21	a/Phase seq.		THD A1	THD A2	THD A3	(1) (2)						Х	х

Note: the table refers to system 3P.n.

- (1) Also maximum value storage (no EEPROM storage).
- (2) Also average (dmd) value (no EEPROM storage).

Additional available information on the display

NI -	I to a A	Lina O	Line 2 Line 4 Line 5	NI-4-	Applications								
No	Line 1	Line 2	Line 3	Line 4	Line 5	Note	Α	В	С	D	Е	F	G
1	Lot n. (text) xxxx	Yr. (text) xx	SYS (text)	x (1/2/3)	160 (min) "dmd"		х	х	х	х	Х	х	х
2	Conn. xxx.x (3ph.n/3ph/3ph./ 3ph.2/1ph/2ph)	CT.rA (text)	1.0 99.99k	PT.rA (text)	1.09999		x	x	x	x	x	x	х
3	LED PULSE (text) kWh	xxxx kWh per pulse					х	х	х	х	х	х	х
4	PULSE out1 (text) kWh/kvarh	xxxx kWh/kvarh per pulse	+/- tot/PAr				x	x	x	x	х	x	х
5	PULSE out2 (text) kWh/kvarh	xxxx kWh/kvarh per pulse	+/- tot/PAr				х	х	х	х	х	х	х
6	Remote out	out1 (text)	on/oFF	Out2 (text)	on/oFF		Х	Х	х	х	Х	х	х
7	Alarm 1 nE/nd	None / out 1 / out 2	Set 1	Set 2	(measurement)					х	х	х	х
8	Alarm 2 nE/nd	None / out 1 / out 2	Set 1	Set 2	(measurement)					х	х	х	х
9	Alarm 3 nE/nd	None / out 1 / out 2	Set 1	Set 2	(measurement)					х	х	х	х
10	Alarm 4 nE/nd	None / out 1 / out 2	Set 1	Set 2	(measurement)					х	х	х	х
11	Analogue 1	Hi:E	0.0 9999	Hi.A	0.0 100.0%					х	Х	х	х
12	Analogue 2	Hi:E	0.0 9999	Hi.A	0.0 100.0%					х	Х	Х	х
13	COM port	None / out 1 / out 2	xxx (address)	bdr (text)	9.6/19.2/ 38.4/115.2		х	х	х	х	х	х	х
14	IP address	XXX	XXX	XXX	XXX		х	Х	Х	Х	Х	Х	Х


Back protection rotary switch

	Function	Rotary switch position	Description
	Unlok	1	All programming parameters are freely modifiable by means of the front key-pad and by means of the communication port.
7	Lock	7	The key-pad, as far as programming is concerned and the data through the serial communication cannot be changed (no writing into meter allowed). Data reading is allowed.

Accuracy (According to EN62053-22 and EN62053-23)

UCS parameter progr. and var. reading software

UCS Software

Multi-language software (Italian, English, French, German, Danish, Czech, Chinese, Spanish) for variable reading, and parameters programming (both online and offline). The program runs under Windows and following

Working mode

Four different working modes can be selected: - management of local RS232 (MODBUS); - management of local optical port (MODBUS) - management of a local RS485 network (MODBUS); - managed via TCP port

Used calculation formulas

Phase variables

Instantaneous effective voltage

$$V_{1N} = \sqrt{\frac{1}{n} \cdot \sum_{i=1}^{n} (V_{1N})_{i}^{2}}$$

 $V_{1N} = \sqrt{\frac{1}{n} \cdot \sum_{1}^{n} (V_{1N})_{i}^{2}}$ Instantaneous active power

$$W_{\rm l} = \frac{1}{n} \cdot \sum_{\rm l}^{n} \left(V_{\rm LN}\right)_{\rm l} \cdot \left(A_{\rm l}\right)_{\rm l}$$
 Instantaneous power factor

$$\cos \varphi_1 = \frac{W_1}{VA_1}$$

Instantaneous effective current

$$A_{1} = \sqrt{\frac{1}{n} \cdot \sum_{1}^{n} (A_{1})_{i}^{2}}$$

Instantaneous apparent power $VA_1 = V_{1N} \cdot A_1$

Instantaneous reactive power $var_1 = \sqrt{(VA_1)^2 - (W_1)^2}$

System variables

Equivalent three-phase voltage $V_{\Sigma} = \frac{V_1 + V_2 + V_3}{3} \cdot \sqrt{3}$

$$V_{\Sigma} = \frac{V_1 + V_2 + V_3}{3} \cdot \sqrt{3}$$

Voltage asymmetry
$$ASY_{LL} = \frac{(V_{LL \max} - V_{LL \min})}{V_{LL} \Sigma}$$

$$ASY_{LN} = \frac{(V_{LN\,\text{max}} - V_{LN\,\text{min}})}{V_{LN}\,\Sigma}$$
 Three-phase reactive power

$$var_{\Sigma} = (var_1 + var_2 + var_3)$$

Three-phase active power

$$W_{\Sigma} = W_1 + W_2 + W_3$$

Three-phase apparent power

$$VA_{\Sigma} = \sqrt{W_{\Sigma}^2 + var_{\Sigma}^2}$$

Total harmonic distortion

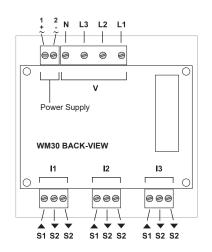
$$THD_{N} = 100 \frac{\sqrt{\sum_{n=2}^{N} |X_{n}|^{2}}}{|X_{1}|}$$

Three-phase power factor

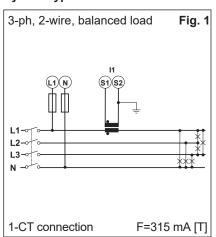
$$\cos \varphi_{\Sigma} = \frac{W_{\Sigma}}{VA_{\Sigma}}$$
 (TPF)

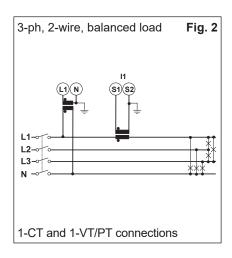
Energy metering

$$k \operatorname{var} hi = \int_{t_1}^{t_2} Qi(t) dt \cong \Delta t \sum_{n=1}^{n_2} Qnj$$

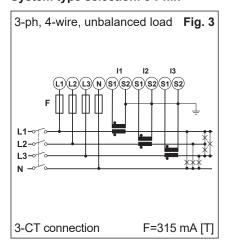

$$kWhi = \int_{t1}^{t2} Pi(t)dt \cong \Delta t \sum_{t1}^{n2} Pnj$$

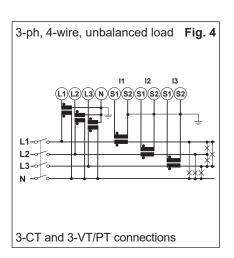
Where:

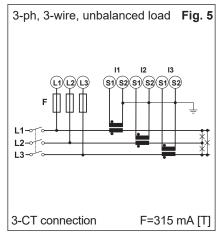

i= considered phase (L1, L2 or L3) P= active power; Q= reactive power; t₁, t₂ =starting and ending time points of consumption recording; \mathbf{n} = time unit Δ ; Δ \mathbf{t} = time interval between two successive power consumptions; n_1 , n_2 = starting and ending discrete time points of consumption recording



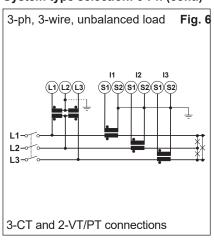
Wiring diagrams

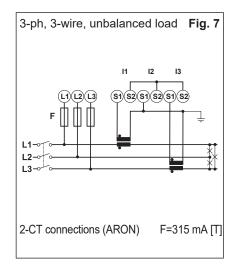


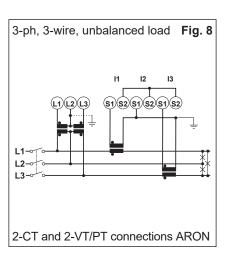

System type selection: 3-Ph.2



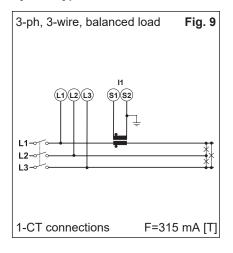
System type selection: 3-Ph.n

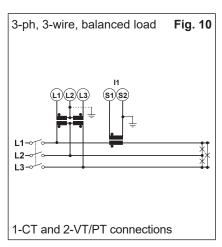


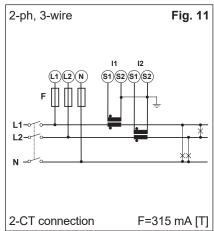



System type selection: 3-Ph

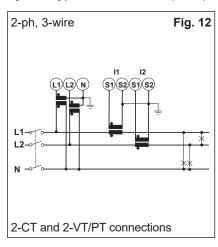
System type selection: 3-Ph (cont.)

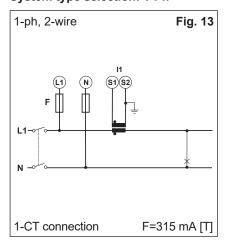


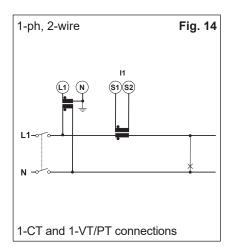



Wiring diagrams

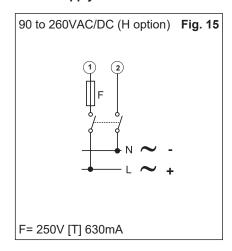
System type selection: 3-Ph.1

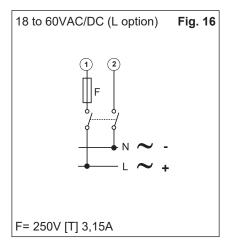


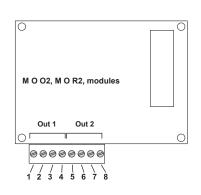

System type selection: 2-Ph

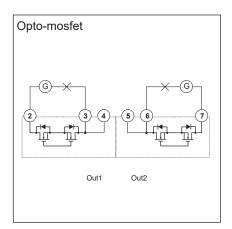


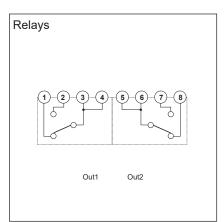
System type selection: 2-Ph (cont.)

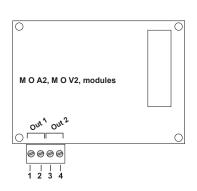


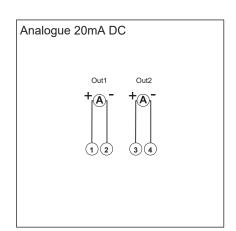

System type selection: 1-Ph

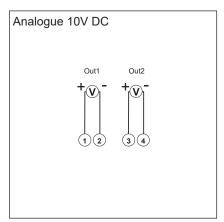

Power Supply

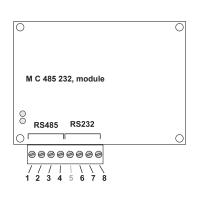


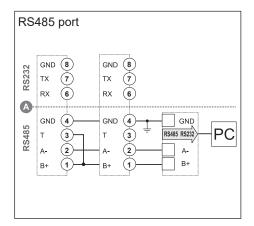


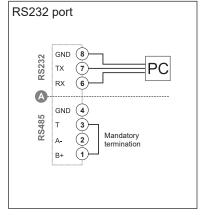



Static, relay and analogue outputs wiring diagrams

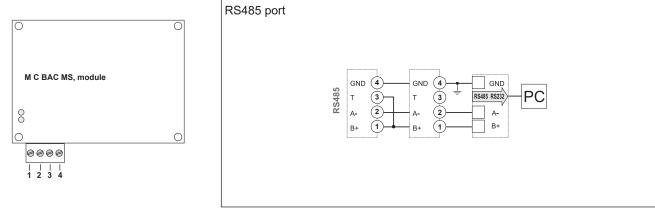




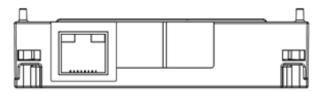




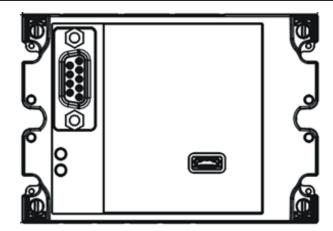
RS485 and RS232 wiring diagrams



NOTE. RS485: additional devices provided with RS485 are connected in parallel. The termination of the serial output is carried out only on the last instrument of the network, by means of a jumper between (B+) and (T). The communication RS232 and RS485 ports **can't be** connected and used simultaneously.

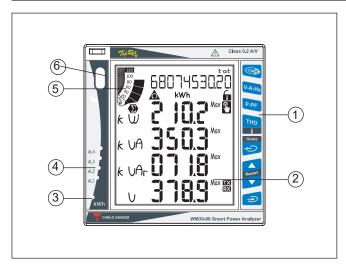


RS485 wiring diagram of Bacnet module


NOTE. RS485: additional devices provided with RS485 are connected in parallel. The termination of the serial output is carried out only on the last instrument of the network, by means of a jumper between (B+) and (T).

Ethernet and BACnet-IP connections

Connection to Ethernet or BACnet modules using the RJ45 connector.


Profibus module connections

Connection to the Profibus module using USB micro type B (Modbus RTU) and RS485 DB9 (Profibus DP-V0).

Front panel description

1. Key-pad

To program the configuration parameters and scroll the variables on the display.

2. Display

LCD-type with alphanumeric indications to:

- display configuration parameters;
- display all the measured variables.

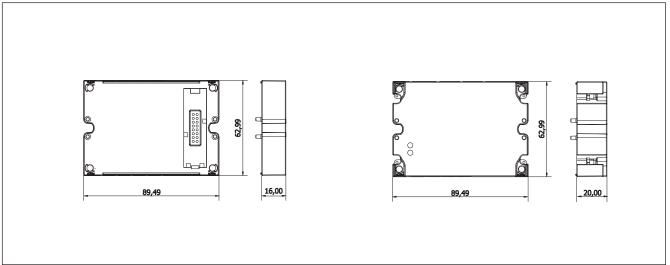
3. kWh LED

Red LED blinking proportional to the energy being measured

4. Alarm LED's

Red LED's light-on when virtual alarms are activated.

5. Main bar-graph


To display the power consumption versus the installed power.

6. Optical communication port

To program the working parameters and to read the measurements.

Dimensions and Panel cut-out

